Advancing Multi-Dimensional Quantum Computing: Design Automation and Software Tools

Kevin Mato ${ }^{1}$, and Robert Wille ${ }^{1,2}$
${ }^{1}$ Technical University of Munich, Munich, Germany
${ }^{2}$ Software Competence Center Hagenberg (SCCH) GmbH, Austria
kevin.mato@tum.de
Technical University of Munich
https://www.cda.cit.tum.de/research/quantum

Quantum Computing: the Next Big thing

- Global Players are heavily investing
- IBM, Google, Microsoft, Amazon
- Exciting startups landscape (Quantinuum, Xanadu...)
- Exponential improvements in the best case
- Killer Applications: physics simulation, machine learning, chemistry, unstructured search, ...
- Example: Haber-Bosch Process
- 1-2\% of world's energy consumption
- $3-5 \%$ of world's gas production (\$11 Billion)
- Several ambitious roadmaps

Analogy to Conventional

Computers

■ Similar picture if we look back in time

- First, bulky computers
- Moores law
\square Digital revolution

Analogy to Conventional

 Computers■ Similar picture if we look back in time \square First, bulky computers

\square

Allowed the design of systems composed of billions of components.

But hardly exploited for quantum computing yet!

Design Automation and Software for Quantum Computing

- Applications
- Compilation
- Simulation
- Verification
- Problem Solver

- QMAP
- DDSIM
- QCEC

- Data structures • Decision Diagrams
- Tensor Networks
- ZX
- Visualization

The Stack From Above

Ne \&T

Application
$\begin{array}{c}\text { MQT Pred, Bench, } \\ \text { ProblemSolver }\end{array}$

The Qudit Stack From Above
veess TITI

Introduction: Qudits

- Subspace operations
- Global Hilbert space operations

Why Qudits are so interesting?

- Qudits can be implemented on the latest quantum technologies
- Much richer entanglement structure of qudits compared to qubits
- Better circuit complexity and algorithmic efficiency, at an increasing design cost
- Mixed Dimensional Systems

Mixed-Dimensional Systems

- Integer optimization arXiv:2204.00340

- Fermion-Boson Interactions
arXiv:1312.2849

- Compression: Higher Dimensions arXiv:0804.0272

- Compression: Problem Reincoding

- Quantum Machine Learning

The Qudit Stack From Above

Quantum Circuits

- Objective function or algorithm: $f(x)=\sum_{i=1}^{\mathrm{K}} a_{i}+\sum_{i, \mathrm{j}, \mathrm{k}=1}^{\mathrm{Y}} p_{i} p_{j} p_{k}+\ldots+\sum_{\mathrm{I}=1}^{\mathrm{D}} c_{l}$

Compilation

The Need For Simulation

Ne\$ST T T

There are four immediate advantages in having an appropriate simulator for mixed-dimensional quantum systems:

- Getting otherwise opaque information about the quantum state
- Aiding in verification

Quantum Circuits Simulation

Quantum Circuits Simulation

- Matrix vector multiplication:

$$
H_{3} \cdot|0\rangle=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{\frac{2 \pi}{3}} & e^{\frac{-2 \pi}{3}} \\
1 & e^{\frac{-2 \pi}{3}} & e^{\frac{2 \pi}{3}}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Exponential complexity \rightarrow Efficient representation required

Quantum Logic with Decision Diagrams

$\left[\begin{array}{cccccccccccc}\alpha_{000} & \alpha_{001} & \alpha_{010} & \alpha_{011} & \alpha_{020} & \alpha_{021} & \alpha_{100} & \alpha_{101} & \alpha_{110} & \alpha_{111} & \alpha_{120} & \alpha_{121}\end{array}\right]$

Structure

Structure

Structure

Structure + Sparsity

$\frac{\text { neess } T I T I T}{}$

Structure + Sparsity + Redundancy

Decision Diagram

Decision Diagrams of Operations

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{c|c}
1 & 1 \\
\hline 1 & -1
\end{array}\right] \quad I_{3}=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right]
$$

DxD Blocks

$\mathrm{U}=H \otimes I_{3}$

Operations: Efficient Multiplication

$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \cdot\left[\begin{array}{l}E \\ F\end{array}\right]=\left[\begin{array}{l}A \cdot E+B \cdot F \\ C \cdot E+D \cdot F\end{array}\right]$
$\left(H \otimes I_{3}\right) \cdot|00\rangle=$

Operations: Efficient Multiplication

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{l}
E \\
F
\end{array}\right]=\begin{aligned}
& \mid A \cdot E+B \cdot F \\
& \hline C \cdot E+D \cdot F
\end{aligned} \quad \begin{aligned}
& \text { Since } \mathbf{A} \text { and } \mathbf{C} \text { point the same structure the } \\
& \text { multiplication can be made once and the resu }
\end{aligned}
$$ multiplication can be made once and the result stored for subsequent operations.

Operations: Efficient Multiplication

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{l}
E \\
F
\end{array}\right]=\left[\begin{array}{l}
A \cdot E+B \cdot F \\
C \cdot E+D \cdot F
\end{array}\right]
$$

Operations: Efficient Multiplication

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{l}
E \\
F
\end{array}\right]=\left[\begin{array}{l}
A \cdot E+B \cdot F \\
C \cdot E+D \cdot F
\end{array}\right]
$$

Significant reduction

 in the number of operations!

The Qudit Stack From Above

Problem: Mixed-Dimensional Quantum State Preparation

$$
\psi=\left[\begin{array}{llllllllllll}
\alpha_{000} & \alpha_{001} & \alpha_{010} & \alpha_{011} & \alpha_{020} & \alpha_{021} & \alpha_{100} & \alpha_{101} & \alpha_{110} & \alpha_{111} & \alpha_{120} & \alpha_{121}
\end{array}\right]
$$

State Reduced

- Normalized
- Nodes cut based fidelity contribution

State Reduced and Optimized

The Qudit Stack From Above

Why a Compiler?

Ne®sT 1 ПП

Trading entangling operations for local ones!

- Entangling operations.
- Local operations.

Problem: Compilation of Local Operations

- Improve the error-rate of current state-of-art decomposition algorithms.

Given Unitary U find decomposition:

$$
U=V_{k} \cdot V_{k-1} \cdots V_{1} \cdot \Theta
$$

- Two-level Rotations
- Arbitrary Phases

Example: QR decomposition

Initial Unitary:

$$
U=V_{3} \cdot V_{2} \cdot V_{1} \cdot \Theta_{2} \cdot \Theta_{1}
$$

$$
\begin{aligned}
& \left.\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{e^{\frac{2 i}{3}}}{\sqrt{3}} & \frac{\mathrm{e}^{-\frac{2 i \pi}{3}}}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{\mathrm{e}^{-\frac{2 i}{3} \pi}}{\sqrt{3}} & \frac{\mathrm{e}^{\frac{2 i \pi}{3}}}{\sqrt{3}}
\end{array}\right)\left|\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
0 & -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\right|\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right)\left|\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & \dot{\mathbb{1}}
\end{array}\right)\right|\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \neq 1 & 0 \\
0 & 0 & \dot{1}
\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&-V_{3} ; L_{12} V_{1} ; L_{01}
\end{aligned}
$$

- Can these rotations be directly and natively implemented?
- Is the current sequence the most cost efficient?

Energy Level Graph

- Physical levels connected by couplings.
- Each logic state is mapped to a physical level.
- Qutrit Energy Level Graph

- Ideal Energy Level Graph

- Subset of couplings.
- Subset of energy levels.
- Ancilla levels.
- Mapping between logical and physical levels is unordered.
- Realistic Energy Level Graph

Adaptive decomposition

Initial Unitary:
 θ, ϕ of logical 02;

Options for logical operations:

- Parameters are calculated as:

$$
\theta=2 \cdot \arctan \left(\left|\frac{U_{r 2, c}}{U_{r, c}}\right|\right)
$$

- 0-1
$\varphi=-\left[\frac{\pi}{2}+\arg \left(U_{r, c}\right)-\arg \left(U_{r 2, c}\right)\right]$
- Logical operation cost:

Cost of previous operations +
Operations for routing the states +
Physical rotation implementing the intended operation

Propagating Z rotations

- Final circuit:

- Rule:
$\left[\begin{array}{ccc}e^{i \phi} & 0 & 0 \\ 0 & e^{i \gamma} & 0 \\ 0 & 0 & e^{i \delta}\end{array}\right] \cdot R_{0,1}(\theta, \alpha)=R_{0,1}(\theta, \alpha-\phi+\gamma) \cdot\left[\begin{array}{ccc}e^{i \phi} & 0 & 0 \\ 0 & e^{\gamma} & 0 \\ 0 & 0 & e^{i \delta}\end{array}\right]$

The Qudit Stack From Above

Problem: Compilation of Entangling Operations

- Given a unitary U representing an interaction between two qudits of dimension d Find a decomposition of U into arbitrary local unitaries and a pre-defined set of entangling gates In a way that is as close to the optimum as possible.
- Each decomposition takes into account the structure of the entangling gate provided by the quantum hardware and the cost of each gate
- A compilation workflow in 2 steps

Entanglement Structures

- Much richer entanglement structure of qudits compared to qubits

- Challenges in finding suitable gate sets native to hardware and compilation algorithms for these gate sets
- Theory and design methods are insufficient, therefore qudit compilation is still manual
- Once you are given an unknown arbitrary two-qudit unitary it is not possible to understand beforehand if it is entangling, without performing expensive computations or experiments
- How can you efficiently implement an arbitrary two-qudit unitary given the native gate set of the device?

Decomposition: First Step

- One of the advantages of using qudits: Trading entangling operations for local ones
- We need to quantify the entangling interactions between the two qudits

- We map the target unitary on two-qudits, to an appropriate single qudit unitary, by re-encoding

The Basic Brick: CEX Gate

- The decomposition of the chosen cRot in function of θ and ϕ

- The decomposition of the chosen $p S$ wap in function of θ and ϕ

Make your own CEX: Second Step

- Offline
- Parametrized circuit:

Objective function
$\longrightarrow \operatorname{Fidelity}(A, B)=\frac{1}{d^{2}} \operatorname{Tr}\left\langle A^{\dagger}, B\right\rangle$
Ansatz Binary Search

- A genuine qudit entangling gate: $L S$ gate
$\mathrm{LS}(\theta)=e^{-i \theta \cdot \sum_{i=0}^{d-1}|i i\rangle\langle i i|}$
- Two-level entangling gate: MS gate
$\operatorname{MS}(\theta)=e^{-i \frac{\theta}{4} \cdot\left(I \otimes I+\sigma_{x_{01}} \otimes \sigma_{x_{01}}\right)}$
- Custom user input

$$
U(\vec{\lambda})=\left[\prod_{m=0}^{d-2}\left(\prod_{n=m+1}^{d-1} \exp \left(i Z_{m, n} \lambda_{n, m}\right) \exp \left(i Y_{m, n} \lambda_{m, n}\right)\right)\right] \cdot\left[\prod_{l=1}^{d-1} \exp \left(i Z_{l, d} \lambda_{l, l}\right)\right]
$$

Expressible representation constructed from $d^{2}-1$ parameters

The Qudit Stack From Above

The Qudit Stack From Above

Problem

- The goal is to improve the quality of computation by reducing the number of operations in a sequence, with a focus on non-local operations.

It can be achieved by:

- Rewriting the sequence in a more noise-efficient one.
- Reducing the number of qubits, or qudits.

The process is called circuit compression.

Circuit Compression

Noise as a Metric

- Encoding, or mapping, the qubit logic into a Hilbert space generated by the combination of suitable higherdimensional carriers.
- Qubits that are frequently entangled get mapped on the same qudit.

Mapping: Graph Clustering

The Qudit Stack From Above

The Qudit Stack From Above: Conclusions

Acknowledgments

Funded by the European Union under Horizon Europe Programme -
Grant Agreement 101080086 — NeQST. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

