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Quantum Computing:
the Next Big thing

m Global Players are heavily investing
o IBM, Google, Microsoft, Amazon
o Exciting startups landscape (Quantinuum, Xanadu...)
o Exponential improvements in the best case
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m Killer Applications: physics simulation, machine
learning, chemistry, unstructured search, ...

m Example: Haber-Bosch Process
o 1-2% of world’'s energy consumption
o 3-5% of world’s gas production ($11 Billion)
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m Several ambitious roadmaps ...
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Analogy to Conventional
Computers

m Similar picture if we look back in time
o First, bulky computers
o Moores law
o Digital revolution
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Allowed the design of systems
composed of billions of components.

But hardly exploited for quantum computing yet!

Integrated design flows




Design Automation and Software

for Quantum Computing

Integrated design flows

= Applications
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‘= Problem Solver

‘= QMAP
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= Compilation
‘- Simulation - DDSIM
= Verification - QCEC

= Data structures .

= Visualization

Decision Diagrams
Tensor Networks
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The Stack From Above
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Introduction: Qudits
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Qubit Qudit

Why Qudits are so interesting?

= Qudits can be implemented on the latest quantum technologies

= Much richer entanglement structure of qudits compared to qubits

= Better circuit complexity and algorithmic efficiency, at an increasing
design cost

= Mixed Dimensional Systems

*https://labsites.rochester.edu/bloklab/index.php/qudits/

» Subspace operations
= Global Hilbert space
operations

A

CNOT.
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Genuine qudit
entangling gates.



Mixed-Dimensional Systems
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Integer optimization
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Compression: Problem Reincoding
QSW59989.2023.00027

Ground Truth
YT =

Fermion-Boson Interactions

Compression: Higher Dimensions

arXiv:0804.0272
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The Qudit Stack From Above

Mixed-Dimensional
Decision Diagrams

Quantum Circuit
Simulation with Decision
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Quantum Circuits
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= Objective function or algorithm:  f(x) = z a; + z piDPk + - + Z ¢

Quantum algorithm:
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The Need For Simulation

There are four immediate advantages in having an appropriate simulator for mixed-dimensional quantum systems:

= Getting otherwise opaque information about the quantum state
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Aiding in verification

Enabling design exploration (also noise-aware)

Identifying potential for compression
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Quantum Circuits Simulation

Initial State for every operation ... Final State
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Quantum Circuits Simulation
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= Matrix vector multiplication:
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= Exponential complexity
= Efficient representation required
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Quantum Logic with Decision Diagrams

@000

o1

Xo10

®o11

X020

*p21

X100

101

110

111

*120

Ne@ST

(121 ]

15



Structure

/
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Structure
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Structure + Sparsity
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Structure + Sparsity + Redundancy
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Structure + Sparsity + Redundancy
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Structure + Sparsity + Redundancy
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Structure + Sparsity + Redundancy
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Decision Diagram
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Decision Diagrams of Operations
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Operations: Efficient Multiplication

A Bl [E1 [A-E+B-F
C D '[F]_ C-E+D-F
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Operations: Efficient Multiplication

TUTI

A Bl [E] _A-E+B-F 1 Since A and C point the same structure the
C DIl LF C-E+D-F /\/E multiplication can be made once and the result

stored for subsequent operations.
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Operations: Efficient Multiplication

A B .[E]_A-E+B-F 2
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Operations: Efficient Multiplication

A
C

B [Elz A-E+B-F
pl lFl = |lc-E+D-F

Significant reduction
In the number of operations!
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The Qudit Stack From Above

Mixed-Dimensional

Decision Diagrams State Preparation

Quantum Circuit
Simulation with Decision
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Problem: Mixed-Dimensional Quantum State Preparation

Y = [ago0 @oo1 ®o10 @011 Xo20 X021 X100 X101 X110 X111 X120 X121]
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State Reduced

= Normalized 1
. Nodes cut based fidelity / V2
contribution

do

r+iv q—I—iz

c+id s+ inf x+ iy
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State Reduced and Optimized
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The Qudit Stack From Above

Mixed-Dimensional

Decision Diagrams State Preparation

Quantum Circuit
Simulation with Decision
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Why a Compiler?

10)

11)

12)
13)

Trading entangling operations for local ones!

1000
010 0
0 0 0 1
"o 01 0
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* Entangling operations.
» Local operations.
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Given Unitary U find decomposition: U= Vk . Vk—l Sl 21K Q)

Initial Unitary:
1 1 1
\/3 \/3 V3
21 21
1 e 3 e 3
\3 \3 \3
21 217
1 e 3 e 3
\3 A3 \3

Problem: Compilation of Local Operations
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Improve the error-rate of current state-of-art decomposition algorithms.

= Two-level Rotations
= Arbitrary Phases

Example: QR decomposition

U= V3'V2'V1‘®2'@1

xf’1§\f1§\f:'[§ 1 o 0 1 0 O 1 ©0 0 1 0 ©
R N o -1 © 0 +1 0 0 1 0
T A 0 0 1

N—@‘@N—a@ @ 0 1 9 0 1

= Can these rotations be directly and natively implemented?

* |s the current sequence the most cost efficient?
36



Energy Level Graph

5 T—

Ideal Energy Level Graph

Physical levels connected by couplings.

Each logic state is mapped to a physical level.

 —

2)

Realistic Energy Level Graph

Reality is far from ideal:

= Subset of couplings.

= Subset of energy levels.

= Ancilla levels.

= Mapping between logical and physical
levels is unordered.
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Adaptive decomposition

Initial Unitary:

1 1 1
217 2in

1 3 e 3

\3 \3 \3
24 217

1 e 3 e 3
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Parameters are calculated as:

0 = 2 - arctan(|
[
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0, ¢ of logical 02;

Options for logical operations:

= 1-2 too expensive

M u 0'1
oo - 02

o =-| 5 + arg(Ur,c) - arg(Urz,c)]

Logical operation cost:
Cost of previous operations +
Operations for routing the states +
Physical rotation implementing the intended operation
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Propagating Z rotations

=  Final circuit;

= Rule:

el 0 0o ei? 0 0
0 e 0|-Rp1(6,0) =Ro1(0,a—¢p+y)-|0 € 0
0 0 9 0 0 eld

Rop1(6,a+ ¢ —v)

= Forward:

Zo(p +7v)
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The Qudit Stack From Above

Mixed-Dimensional
Decision Diagrams

Two-Qudit Operations

Single Qudit Operations
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Problem: Compilation of Entangling Operations

p— E/ El

Given a unitary U representing an interaction between two qudits of dimension d
Find a decomposition of U into arbitrary local unitaries and a pre-defined set of entangling gates
In a way that is as close to the optimum as possible.

Ne@ST

Each decomposition takes into account the structure of the entangling gate provided by the quantum hardware

and the cost of each gate

A compilation workflow in 2 steps
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Entanglement Structures

= Much richer entanglement structure of qudits compared to qubits

" Local Operations
. Entangling Operations

< = Genuine
5 Entangling
[ Gates.

=  Quantum Algorithm or Functionality

= Challenges in finding suitable gate sets native to hardware and compilation algorithms for these gate sets
= Theory and design methods are insufficient, therefore qudit compilation is still manual

= Once you are given an unknown arbitrary two-qudit unitary it is not possible to understand beforehand if it is
entangling, without performing expensive computations or experiments

= How can you efficiently implement an arbitrary two-qudit unitary given the native gate set of the device?

*https://rebrickable.com/mocs/MOC-110625/Simon%?20Lenz/back-to-the-future-time-machine-mods-improvements/#details
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Decomposition: First Step

o {1 0 0 O
10)
= One of the advantages of using qudits: 11) O 1 0 0
Trading entangling operations for local ones
210 0 0 1
1)
» We need to quantify the entangling interactions between the two qudits 13) - O O ]. 0

U 00 S

NN

=  We map the target unitary on two-qudits, to an appropriate single qudit unitary, by re-encoding

: -pHE-BHE B
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The Basic Brick: CEX Gate

» The decomposition of the chosen cRot in function of 8 and ¢

Ne@ST

» The decomposition of the chosen pSwap in function of 8 and ¢
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Make your own CEX: Second Step

Offline

Objective function Fidelity(A, B) = 5 Tr(A" | B)

Parametrized circuit:

CEX

Ansatz Binary Search
A genuine qudit entangling gate: LS gate LS(0) = o—10-32720 14d) (il

Two-level entangling gate: MS gate MS(6) = e~ 5 UBT+020, @0z,

Custom user input

I
T

U(j) = [qun_jo (Hg;iﬂ_l eXp(iZm,n)\n,m) eXp(iYm,n)\m,n))] ’ [H?:_ll eXp(iZl,d)\l,l)]

Expressible representation constructed from d? — 1 parameters
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The Qudit Stack From Above

Qubit Compression

Mixed-Dimensional

Decision Diagrams State Preparation

Multi-Qudit Operations

Quantum Circuit
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Problem
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» The goal is to improve the quality of computation by reducing the number of operations in a sequence,

with a focus on non-local operations.
It can be achieved by:
» Rewriting the sequence in a more noise-efficient one.
» Reducing the number of qubits, or qudits.

The process is called circuit compression.
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Circuit Compression
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Noise as a Metric
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= Encoding, or mapping, the qubit logic into a Hilbert space generated by the combination of suitable higher-

dimensional carriers.

» Qubits that are frequently entangled get mapped on the same qudit.
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Mapping: Graph Clustering

Qo 2 I!H I!H do.1
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New graph
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The Qudit Stack From Above

Qubit Compression

Mixed-Dimensional

Decision Diagrams State Preparation

Tensor Networks
& Multi-Qudit Operations

ZXW-calculus Quantum Circuit
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Single Qudit Operations Diagrams
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https://emojipedia.org/construction
https://emojipedia.org/construction

The Qudit Stack From Above: Conclusions

Application
Qubit Compression

! Open QASM 2.0 extended
Data-Structures\ / Verification \ /

Mixed-Dimensional
Decision Diagrams

y 7 ¥ 1L Tensor Networks g7 I 1L}

. :
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ﬂgg‘ess& & !.!QGEESSA Multi-Qudit Operations ,,,77+

varix vz WORK

2XWecaleulus Two-Qudit Operations iz Quantum Circuit

Compilation

 OOREOOROEE J Simulation with Decision
- polgnolnmim o
] EAEEARED 1agrams
= Available as Open Source o EnEen

o —

MUNICH Single Qudit Operations

UAN TUM Error Correction
TOOLKIT ) @

= On GitHub under : :
= https://github.com/cda-tum [ Physical Design

@
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