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■ Global Players are heavily investing

□ IBM, Google, Microsoft, Amazon

□ Exciting startups landscape (Quantinuum, Xanadu…)

□ Exponential improvements in the best case

■ Killer Applications: physics simulation, machine

learning, chemistry, unstructured search, …

■ Example: Haber-Bosch Process

□ 1-2% of world‘s energy consumption

□ 3-5% of world‘s gas production ($11 Billion)

■ Several ambitious roadmaps …
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Quantum Computing:

the Next Big thing



■ Similar picture if we look back in time

□ First, bulky computers

□ Moores law

□ Digital revolution
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Analogy to Conventional

Computers
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Conquer

• A*
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• …

Allowed the design of systems 

composed of billions of components.

But hardly exploited for quantum computing yet!



Design Automation and Software

for Quantum Computing
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Integrated design flows

▪ Applications

▪ Compilation

▪ Simulation

▪ Verification

▪ Data structures

▪ Visualization

▪ Problem Solver

▪ QMAP

▪ DDSIM

▪ QCEC

▪ Decision Diagrams

▪ Tensor Networks

▪ ZX 

▪ DDVIS



6

The Stack From Above

Application
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The Qudit Stack From Above
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Introduction: Qudits

*

Qubit Qudit

▪ Qudits can be implemented on the latest quantum technologies

▪ Much richer entanglement structure of qudits compared to qubits

▪ Better circuit complexity and algorithmic efficiency, at an increasing 

design cost

▪ Mixed Dimensional Systems

▪ Subspace operations

▪ Global Hilbert space

operations

Why Qudits are so interesting?

*https://labsites.rochester.edu/bloklab/index.php/qudits/

▪ CNOT.
▪ Genuine qudit 

entangling gates.

+
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Mixed-Dimensional Systems

▪ Fermion-Boson Interactions
arXiv:1312.2849

𝐻 =

𝑖

𝐻𝑖 +⋯

▪ Integer optimization
arXiv:2204.00340 ▪ Compression: Higher Dimensions

arXiv:0804.0272

▪ Compression: Problem Reincoding
QSW59989.2023.00027

▪ Quantum Machine Learning
arXiv:2302.13932
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The Qudit Stack From Above

Application
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Quantum Circuits
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▪ Objective function or algorithm:

Compilation

Compilation

▪ Quantum algorithm:
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…+2

x

+1

Z

There are four immediate advantages in having an appropriate simulator for mixed-dimensional quantum systems:

▪ Getting otherwise opaque information about the quantum state 

The Need For Simulation

} |𝜓⟩

𝑄0

𝑄1

𝑄2

+1

} |𝜙⟩

?

▪ Enabling design exploration (also noise-aware)

▪ Identifying potential for compression

▪ Aiding in verification

𝑄2

𝑄1

𝑄0
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Quantum Circuits Simulation
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Quantum Circuits Simulation

▪ Matrix vector multiplication:

𝑄1

𝑄0

𝑄2

1 2

2

3

4
X+1

H

▪ Exponential complexity

➔ Efficient representation required

X+1
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𝛼001 𝛼010 𝛼011

Quantum Logic with Decision Diagrams

𝛼020 𝛼021 𝛼100 𝛼101 𝛼110 𝛼111 𝛼120𝛼000 𝛼121[ ]
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𝑞2
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𝑞2
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𝑞2
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𝑞2
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Decision Diagrams of Operations

𝐻 =
1

2

1 1
1 −1

𝐼3 =
1 0 0
0 1 0
0 0 1

U = 𝐻⊗ 𝐼3

𝑞1

ൗ1
2

−1

1

𝑞0

1

0
0

𝑞1

−1

ൗ1
2

DxD Blocks

0 0 00

𝑞0

1

1

0
00 0 00



26

Operations: Efficient Multiplication
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Operations: Efficient Multiplication
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Operations: Efficient Multiplication
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Operations: Efficient Multiplication
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The Qudit Stack From Above
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Problem: Mixed-Dimensional Quantum State Preparation

𝛼001 𝛼010 𝛼011 𝛼020 𝛼021 𝛼100 𝛼101 𝛼110 𝛼111 𝛼120𝛼000 𝛼121𝜓 = [ ]

} |𝜓⟩𝑄1

𝑄0

𝑄2

1

2

3

2
X+1

0

X+1 1

X+1

0

X+1

0



32

𝑞2
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𝑞2
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The Qudit Stack From Above

Application

Compilation Simulation

Error Correction

Physical Design
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Why a Compiler?

0

1

0

1

2

3

Trading entangling operations for local ones!

𝑅0𝑎(𝜋,
𝜋

2
) 𝑅01(𝜃, 𝜑−

𝜋

2
)

MS01(θ,φ)

𝑅01(𝜃, 𝜑+
𝜋

2
) 𝑅0𝑎(𝜋,

𝜋

2
)

𝑅01(𝜃, 𝜑)

▪ Local operations.
▪ Entangling operations.

U
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Problem: Compilation of Local Operations

▪ Improve the error-rate of current state-of-art decomposition algorithms.

Given Unitary 𝑈 find decomposition:
▪ Two-level Rotations

▪ Arbitrary Phases

Example: QR decomposition

Initial Unitary:

𝑉3; 𝐿12 𝑉2; 𝐿01 𝑉1; 𝐿12 ϴ2; 𝐿1 ϴ1; 𝐿2

▪ Can these rotations be directly and natively implemented?

▪ Is the current sequence the most cost efficient?

𝑈 = 𝑉3 ⋅ 𝑉2 ⋅ 𝑉1 ⋅ Θ2 ⋅ Θ1

𝑈 = 𝑉𝑘 ⋅ 𝑉𝑘−1⋯𝑉1 ⋅ Θ

+
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Energy Level Graph

0

1
3

2

4
5

▪ Physical levels connected by couplings.

▪ Each logic state is mapped to a physical level.

▪ Qutrit Energy Level Graph

0

1

3

2

4

▪ Ideal Energy Level Graph ▪ Realistic Energy Level Graph

Reality is far from ideal:

▪ Subset of couplings.

▪ Subset of energy levels.

▪ Ancilla levels.

▪ Mapping between logical and physical

levels is unordered.
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Adaptive decomposition

Initial Unitary:

𝑅12(𝜃, 𝜑)

▪ Parameters are calculated as:

0
1

2

1 2

0

▪ Logical operation cost:

Cost of previous operations +

Operations for routing the states + 

Physical rotation implementing the intended operation

ϴ, ϕ of logical 02;

Options for logical operations:
▪ 1-2 too expensive

▪ 0-1

▪ 0-2

Snapshot ☺

θ = 2 ⋅ arctan(|
𝑈𝑟2,𝑐

𝑈𝑟,𝑐
|)

𝜑 = −[
𝜋

2
+ arg 𝑈𝑟,𝑐 − arg 𝑈𝑟2,𝑐 ]
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Propagating 𝑍 rotations

▪ Rule:

𝑅01(𝜃, 𝛼) 𝑅23(𝜃, 𝜑) 𝑅12(𝜇, 𝛽)𝑍0(𝜑) 𝑍0(𝛾)

𝑅01(𝜃, 𝛼 + 𝜑 − 𝛾) 𝑅23(𝜃, 𝜑) 𝑅12(𝜇, 𝛽)𝑍0(𝜑 + 𝛾)

𝑅01(𝜃, 𝛼) 𝑅23(𝜃, 𝜑) 𝑅12(𝜇, 𝛽) 𝑍0(𝜑 + 𝛾)

▪ Final circuit:

▪ Backward:

▪ Forward: 
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The Qudit Stack From Above
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Problem: Compilation of Entangling Operations

▪ Given a unitary 𝑈 representing an interaction between two qudits of dimension 𝑑

Find a decomposition of 𝑈 into arbitrary local unitaries and a pre-defined set of entangling gates

In a way that is as close to the optimum as possible.

▪ Each decomposition takes into account the structure of the entangling gate provided by the quantum hardware 

and the cost of each gate

▪ A compilation workflow in 2 steps
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Entanglement Structures

*https://rebrickable.com/mocs/MOC-110625/Simon%20Lenz/back-to-the-future-time-machine-mods-improvements/#details

▪ Much richer entanglement structure of qudits compared to qubits

▪ Local Operations

▪ Entangling Operations

▪ Quantum Algorithm or Functionality

▪ CNOT.
▪ Genuine 

Entangling

Gates.

▪ Challenges in finding suitable gate sets native to hardware and compilation algorithms for these gate sets

▪ Theory and design methods are insufficient, therefore qudit compilation is still manual

▪ Once you are given an unknown arbitrary two-qudit unitary it is not possible to understand beforehand if it is

entangling, without performing expensive computations or experiments

▪ How can you efficiently implement an arbitrary two-qudit unitary given the native gate set of the device?

+*



▪ One of the advantages of using qudits:

Trading entangling operations for local ones

43

Decomposition: First Step

▪ We need to quantify the entangling interactions between the two qudits

……𝑈

𝑈 𝐿 𝐿 𝐿 𝐿 𝐿 𝐿

▪ We map the target unitary on two-qudits, to an appropriate single qudit unitary, by re-encoding

0

1

0

1

2

3

𝑑

𝑑

𝑑2 𝐿𝐿 𝐿𝐿𝐿 𝐿
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The Basic Brick: CEX Gate

▪ The decomposition of the chosen cRot in function of 𝜃 and 𝜙

𝑍(
𝜃

2
)

▪ The decomposition of the chosen pSwap in function of 𝜃 and 𝜙

𝐶𝐸𝑋

𝐻 ⋅ 𝑅01(
𝜋

2
,−𝜑−

𝜋

2
)

𝐶𝐸𝑋𝐶𝐸𝑋 𝐶𝐸𝑋

𝑅01(−
𝜋

2
,−𝜑−

𝜋

2
) ⋅ 𝐻

𝐶𝐸𝑋

𝐻

𝑍(−
𝜃

2
)

𝐶𝐸𝑋

𝑅01(−
𝜋

2
,−𝜑−

𝜋

2
)𝑅01(

𝜋

2
,−𝜑−

𝜋

2
)

𝐻 𝐻𝐻𝐻

𝐻 𝑍(−
𝜃

2
)𝑍(

𝜃

2
)
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Make your own CEX: Second Step

𝐸CEX
=

▪ Offline

▪ Parametrized circuit: 

Expressible representation constructed from 𝑑2 − 1 parameters

𝐸

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝑈(λ)

𝐸 𝐸

▪ Custom user input

▪ Two-level entangling gate: MS gate

▪ A genuine qudit entangling gate: LS gate

…

𝐴𝑛𝑠𝑎𝑡𝑧 𝐵𝑖𝑛𝑎𝑟𝑦 𝑆𝑒𝑎𝑟𝑐ℎ

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑈(λ) =
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The Qudit Stack From Above
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Problem

2

2

2

2

4

▪ The goal is to improve the quality of computation by reducing the number of operations in a sequence, 

with a focus on non-local operations.

It can be achieved by:

▪ Rewriting the sequence in a more noise-efficient one.

▪ Reducing the number of qubits, or qudits.

The process is called circuit compression.
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Circuit Compression
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Noise as a Metric
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▪ Encoding, or mapping, the qubit logic into a Hilbert space generated by the combination of suitable higher-

dimensional carriers.

▪ Qubits that are frequently entangled get mapped on the same qudit.
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Mapping: Graph Clustering 
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The Qudit Stack From Above
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▪ Available as Open Source

▪ On GitHub under

▪ https://github.com/cda-tum
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The Qudit Stack From Above: Conclusions
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