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Executive Summary

This report outlines the developmentswithinNeQST towards quantum simulation of
chiral symmetry breaking and fractional excitation patterns inmultiflavor abelian gauge
theories.

While quantum simulation of gauge theories has made fast progress over the re-
cent years, almost all implementations consider a single flavor of matter. It is a crucial
next step of quantum simulation tomove beyond this paradigm: Theories that describe
nature often are naturally described by multiple flavors, such as isospin; multiflavor
theories provide a natural stepping stone to non-Abelian theories with colour charge;
and they can pose severe sign problems, and thus represent stringent test beds for
quantum simulators. To make multiflavor theories amenable to quantum simulation,
we have chosen a particularly relevant one, quantum electrodynamics on a ring. In the
semiclassical regime in the continuum, it has been shown that this theory, the so-called
multi-flavor Schwinger model, hosts gauge field configurations with fractional topolog-
ical charge, so-called fractons. To date, it is, however, not clear how these persist in the
strongly coupled regime and in particular on a lattice, the natural regimes of application
of quantum simulators.

With the input of UIBK, ICFO and UNITN, have developed an implementation of the
multi-flavor Schwinger model for the trapped-ion qudits platform that is being devel-
oped within NeQST. The approach is based on a variational algorithm that is imple-
mentable with abilities already demonstrated in the laboratory. Further, we have iden-
tified smoking gun observables to demonstrate the presence of fractional gauge field
configurations, which is particularly challenging as the vector potential used in previous
works is not accessible in the non-perturbative many-body regimewe are interested in.
We have performed detailed numerical benchmarks, which connects to other certifica-
tion approaches developed by ICFO and CFT-PAS and which will be relevant input for
the simulator suite developed by TUM. Thanks to these simulations, we have identified
the scaling of resources and theminimal requirements to observe the fractional config-
urations, finding an excellent match to the resources already available in the qudit plat-
form. In parallel, UIBK has demonstrated an experimental demonstration of an Abelian
lattice gauge theory in 2+1 dimensions. Together, these results present a blueprint for
the measurement of fracton excitations in qudit quantum simulators.
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1 Introduction

The report corresponds to the deliverable "D2.1 Report on quantum simulation
of chiral symmetry breaking and fractional excitation patterns in multiflavor Abelian
gauge theories". It summarizes the work of work package "WP2 Quantum simulation
algorithms for Abelian and non-Abelian gauge theories" within "Task 2.1" until project
month 18.

In this WP, mainly the University of Trento (UNITN), ICFO–The Institute of Photonic
Sciences (ICFO), University of Innsbruck (UIBK), and the Technical Universiy of Munich
(TUM) work together to develop protocols for quantum simulation of lattice gauge the-
ories. In particular, UNITN and ICFO develop the theoretical frameworks, including the
identification of relevant observables and field-theoretic interpretations, and perform
numerical benchmarks, UIBK provides expertise on hardware requirements and per-
forms experimental implementations, and TUMdevelops a software framework for the
efficient simulations and representations of quantum states. Relevant synergies occur
with WP1 on quantum hardware and software control, with HRI-EU and Fraunhofer
IOSB-AST on algorithm design (WP3), and with CFT and ICFO on certification on quan-
tum devices and algorithms (WP4).

The rest of this Deliverable reports on our results on quantum simulations of chi-
ral symmetry breaking and fractional excitation patterns in multi-flavor Abelian gauge
theories. In this introduction, we discuss the importance of the problem and present
the state of the art, focusing on two aspects of quantum simulations (QSs) of Lattice
Gauge Theories (LGTs): the use of qudits as well as multi-flavor theories as targets. The
scientific results are presented in Sec. 2, and we draw our conclusions in Sec. 3 and put
them into further context. Certain technical details are delegated to Appendices.

1.1 Importance of the problem

The simulation of LGTs plays a fundamental role in the theoretical understanding of
fundamental interactions. Even though from the beginning of Monte Carlo simulations
[1] there have beenmajor successes in the numerical study of quantum chromodynam-
ics (QCD) and other field theories on the lattice [2, 3], there are still open questions that
cannot be addressed with this standard method. The infamous sign problem prevents
the study of QCD at finite baryon density and thus makes first-principles simulations of
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exotic natural objects like neutron stars infeasible [2]. Quantum simulation emerges as
a main candidate to overcome these challenges, promising a new era where quantum
systems are harnessed to study complex quantum phenomena directly [4]. Quantum
simulators are naturally sign-problem-free and can tackle long-standing fundamental
questions in high-energy and condensedmatter physics. Among the plethora ofmodels
that can be explored, (1+1)-dimensional quantum electrodynamics, famously known as
the SchwingerModel, offers a fertile testing ground. Thismodel captures the essence of
quantum field theories, such as QCD, in a simpler, moremanageable form, and has thus
facilitated insights into phenomena like charge confinement, topological theta vacua,
and chiral symmetry breaking. Understanding the subtle mechanisms behind these
phenomena is fundamental for theoretical physics, particularly when exploring gauge
field theories and supersymmetric models. For example, investigations into Euclidean
path integrals reveal the importance of sectors with non-zero topological charge. While
initially only integer topological sectors have been considered, configurations with frac-
tional topological charge are vital in resolving paradoxes related to non-vanishing gluino
condensates in supersymmetric Yang–Mills theory, which cannot be directly achieved
through traditional methods that consider only integer topological charges. Similarly, in
non-Abelian gauge theories fractional topological configurations can explain the mech-
anisms behind fermion condensate formation where standard approaches fall short.
However, almost all of these insights derive from semi-classical arguments, and it is not
certain if and how they persist in strongly-coupled theories.

In thiswork, wediscuss the presence of these configurations in the full non-perturbative
quantummany-body regime of a paradigmatic gauge theory. To achieve this with man-
ageable resources, our study dives into the Schwinger model of quantum electrody-
namics (QED) with two fermionic flavours on a circle. In our study, we employ both
periodic and flavor-dependent twisted boundary conditions. These have an essential
influence on the symmetry properties of the theory and thus allow for the exploration
of a fractional chiral condensate in the ground state. This phenomenon is connected
to the appearance of fracton gauge-field configurations, which were studied in previ-
ous analytical work with semi-classical approximations [5]. The persistence of these
fractional excitations is not guaranteed in the passage from the perturbative to the
non-perturbative regime. To perform efficient classical tensor network simulation, we
employ a cutoff of the local Hilbert space of the gauge fields in the range S = 1, 2, 3.
Even in this strong truncation regime, we observe the persistence of fracton excitations
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at finite volume, and we can even quantitatively confirm the perturbative continuum
predictions. These results demonstrate the importance of fractional gauge-field con-
figurations in strongly coupled lattice models.

The ability to explore these fractons in truncated lattice theories opens the door to
studying them in existing quantum hardware. In fact, the Schwinger model with N ≥
3 flavors develops a strong sign problem, preventing powerful Monte-Carlo methods,
making them a relevant target for the naturally sign-problem-free quantum simulators.
Leveraging these novel possibilities, we discuss the necessary resources for quantum
simulating fractons, demonstrating the feasibility in state-of-the-art trapped-ion qudit
quantum devices, as are available within the NeQST project.

In a broader perspective, this work significantly widens the possibilities and scenar-
ios amenable to quantum simulation. In particular, multi-flavour gauge theories are im-
portant if one aims tomodel the isospin. Also, themultiple flavours require a non-trivial
increase of the degrees of freedom that need to be controlled, without however the
full problematics of handling multiple colour charges with the associated non-Abelian
symmetry. Thus, multiflavor theories represent a crucial intermediate step toward the
quest for non-Abelian theories.

1.2 State of the art

While much progress has been achieved in recent years in quantum simulation of
LGTs, the large potential of using qudits has been realized only recently, triggered also
by significant experimental progress. Moreover, multiflavor theories have been consid-
ered only in very few proposals. In what follows, we briefly review the state of the art
of both aspects.

1.2.1 Quantum simulators of Lattice Gauge Theories with qudits

The NeQST consortium was among the pioneers of gauge-theory quantum simula-
tors with qudits, including significant individual and joint contributions before the start
of the NeQST project. Important contributions include proposals and implementations
for Abelian and non-Abelian LGTs using long spins, first focusing on cold atomic gases.
Initial collaborations of UniTN and ICFOwith theory and experimental groups in Heidel-
berg on gauge-theories [6–9], were extended later also to universal atomic qudit-based
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schemes for cold-atom quantum computers [10] including practical applications [11].
The use of qudits for LGT implementations using qudit systems is only recently gaining
attention, for example [12, 13].

1.2.2 Quantum simulators of multi-flavor gauge theories

To date, almost no proposals exist to implement multi-flavour gauge theories in
quantum simulators. A notable exception is Ref. [14], where it was proposed to use
a digital quantum computer to simulate the N = 3 Schwinger model, which suffers
from a severe sign problem.

In the context of classical simulation techniques using tensor networks, which tra-
ditionally have generated strong synergies with quantum simulation, the multi-flavor
Schwinger model has attracted some attention since about 10 years ago, e.g., [15].

2 Fractons in the multi-flavor Schwinger model

This main section of the report presents our results on quantum simulating fraction-
alized gauge-field configurations of themulti-flavor Schwingermodel using trapped-ion
qudit hardware.

In what follows, we will first give a brief overview of the physical properties of the
SchwingerModel in the continuummodel and discuss how the fractional condensation
of the fermions in the systems arises from the presence of twisted boundary conditions.
We then introduce the lattice realization of the model used for the numerics based
on exact diagonalization and tensor-network techniques. The most important results
constitute the identification of signatures of fractionalized gauge configurations that
become visible in lattice models amenable for qudit quantum simulation. We conclude
by describing a quantum-simulation protocol based on a variational algorithm.

2.1 Fractional gauge configurations in path-integral formulations of themulti-
flavor Schwinger model

We consider (1+1)-dimensional QED with N fermionic flavours, living on a cylinder
R × S that is closed in the spatial direction. We denote its circumference as L and its
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volume as V = R× L. The action of the theory is

S =

∫
V

d2x

{
− 1

4
F 2
µν + i

N∑
p=1

ψ̄p /Dψp −
N∑
p=1

mpψ̄pψp

}
, (1)

where Dµ = ∂µ − ieAµ is the covariant derivative, capturing the gauge-field–matter
interactions.

When flavour-independent (“standard”) boundary conditions are imposed on the
fermions, i.e., ψp(x + L) = eiαψp(x) ∀p ∈ {1, · · · , N}, potentially with a flavour-
independent phase α, the system has a SU(N)L ⊗ SU(N)R flavour symmetry in the
zero mass limit, prohibiting the generation of a chiral condensate due to the Coleman
theorem [16]. However, in case the boundary conditions become flavour dependent,
i.e., the phase α becomes a function of the flavour index, e.g., αp = 2πp/N , the chiral
symmetry is explicitly broken and chiral condensation is allowed even for vanishing rest
masses.

Indeed, for small volumes (eL ≪ 1), semi-classical arguments [5] suggest a non-
vanishing chiral condensate in the presence of flavour-dependent boundary conditions.
The main ingredient of this analysis is a new symmetry, induced by the transformation

A1(x) → A1(x) +
2π

NeL
,

ψp(x) → ψp+1(x) for p ∈ {1, · · · , N − 1},
ψN(x) → e−i2πx/Lψ1(x) . (2)

This combination of broken chiral symmetry and forbidden gauge transformation is ab-
sent for standard boundary conditions but emerges as a new symmetry for flavour-
twisted boundary conditions. It requires one to impose a new superselection rule, one
in which the noncontractable circle in the space of gauge fields is reduced by the num-
ber of flavoursN .

Obtaining the same result beyond the small volume approximation is quite subtle.
Within the semi-classical path-integral machinery, the chiral condensate can be calcu-
lated through the partition function Z(m) as a function of the fermion massm as

⟨ψ̄ψ⟩ = − ∂

∂m
lnZ(m)|m=0. (3)

At small mass, the partition function can be approximated as Z(m) ∝ m|ν2|N , where
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ν2 is the two-dimensional equivalent of the Pontryagin class

ν2 =
e

4π

∫
V

d2xϵµνFµν . (4)

Invoking, as is usual, the index theorem to constrain ν2 to integer values, Eq. (3) pre-
dicts that for N > 1 no chiral condensate can be generated, in contradiction to the
small-volume arguments. This apparent paradox can be resolved if we assume that
there is a sector in the gauge field configurations with a fractional topological charge
ν2 = 1/N that contributes to the chiral condensation, as can be seen directly by in-
serting Z(m) ∝ m into Eq. (3). Turning things around, finding a non-vanishing chiral
condensate in the presence of the symmetry given by Eq. (2) implies the existence of
gauge field configurations with a fractional winding, so-called fractons. We will use this
further below as a smoking gun in our computations on strongly-coupled latticemodels.

By including fractons in the path integral, the results become consistent with the
semi-classical analysis for small volumes and one obtains predictions for the full L-
dependent chiral condensate [5],

⟨ψ̄ψ⟩ =
√

µeγ

16πL
e−I/2, (5)

where

I =

∫ ∞

0

dω√
ω2 + µ2

(
coth

L
√
ω2 + µ2

2
− 1

)
, (6)

with the photon mass µ2 = Ne2/π and γ the Euler’s constant.
However, to date it is not clear whether the fractons persist once quantum fluctu-

ations become relevant. The above analysis holds strictly speaking for the continuum
Schwinger model. It is not a priori obvious that a strongly interacting many-body lat-
tice version of this model will exhibit qualitatively and quantitatively the same physics.
As one difficulty, such many-body versions of the Schwinger model usually require fi-
nite truncation on the gauge field-Hilbert space, which makes it impossible to define
a vector potential, in analogy to the difficulty in defining a phase operator. This fact
obstructs the usual semi-classical argumentation for fractional windings, which are es-
sential in demonstrating the existence of fractons.

In this report, we present our efforts leading to answering precisely this question—
can we find a signature for fracton contribution to the ground state physics of a many-
body system, and in particular one that can be implemented in present days quantum
hardware?
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2.2 Truncated lattice Schwinger model

One way to make the continuum theory suitable for the simulation techniques de-
veloped for many-body systems is to formulate a latticemany-body Hamiltonian for the
gauge theory. The seminal work of Kogut and Susskind [17], now used as a standard in
the context of lattice gauge theories formulations, gives a prescription how to put the
degrees of freedom of the continuum gauge theory on a lattice. Thereby, the central
property of the theory—the local or gauge symmetry, takes the formof local constraints
between the matter and the gauge field degrees of freedom. The lattice Hamiltonian
commutes with these constraints on each lattice site and therefore only gauge invari-
ant terms are allowed—the typical correlated hopping of matter with corresponding
change of the gauge field in between.

When it comes to implementation of the lattice gauge theories in a numerical sim-
ulation or in an experiment, the infinite Hilbert space of each gauge field has to be fit
into a finite Hilbert space imposed by memory constraints of the computer or by the
physical degrees of freedom of the quantum simulator. Various techniques for trunca-
tion of the infinite gauge field Hilbert space exist. However, regardless of the precise
implementation, the gauge symmetry has to remain unaltered. One possibility is to
consider the Quantum Link Model (QLM) representation [18], where the local Hilbert
space on each link is given by that of a spin-S object. In the QLM formulation of quan-
tum electrodynamics, the electric field operator En on a link is replaced by the spin-Z
operator eSZ

n ; the link operator U = exp ieAn, which describes the dynamical Peierls
phase picked up by a fermion moving from lattice site n to n + 1 and which raises the
electric field by one unit, is replaced by [S(S + 1)]−1/2S+

n .

For our purpose, we consider a slightmodification of theQLM, first considered in [19]
and used in various works ever since, most recently in [20, 21], presented under the
name truncated Schwinger model (TSM). In the TSM, we have the same Hilbert space
as in the QLM; however, the link operator is replaced by the operator S̃+, whosematrix
elements are given by [S̃+]i,j := δj,i+1. By its definition it is evident that the operator
S̃+ looks like the bulk of the unitary link operator U , but with a hard cutoff.
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Specializing to two flavours, the Hamiltonian of the TSM including the θ−angle reads

HTSM =
e2a

2

∑
n

(Sz
n)

2 +
e2aθ

2π

∑
n

Sz
n +

e2a

8π2
θ2

+
∑
n,p

(−1)n+p−1mpϕ
†
n,pϕn,p

− i

2a

∑
n,p

(fn,pϕ
†
n,pS̃

+
n ϕn+1,p − h.c.) , (7)

where for flavor-twisted boundary conditionswe use fn,p = −1, ifn = L and p = 2 and
+1 otherwise. Here, we chose to stagger the two flavours in opposite ways. Namely,
the first flavour’s particles (anti-particles) live on even (odd) sites, and opposite for the
second flavour. This trick allows us to preserve a discrete chiral symmetry on the lattice,
present in the continuum Schwinger model [22, 23].

The operator S̃+
n deserves a little more discussion. First of all, as mentioned above,

it replaces Un = exp ieAn, and we can no longer define a semiclassical winding of
the vector potential A; we will find further below that nevertheless the fractons can
clearly be revealed. Further, by construction this operator coincides with the unitary U
excepting for a hard cutoff at En = ±S. As a result, rather than [En, Um] = eδnmUm

and [Un, U
†
m] = 0, it obeys the commutation relations

[Sz, S̃±] = ±S̃±, (8a)

[S̃+, S̃−] = |S⟩ ⟨S| − |−S⟩ ⟨−S| . (8b)

Notably, the right hand side of Eq. (8b) is different from zero only in the extremal levels
of each electric field. Even though the TSM does not asymptotically converge to the
lattice Schwinger model as the QLM [21], but rather coincides with it for infinite spin
length, one may thus speculate that the TSM captures well the low-energy properties
of the (untruncated) Schwinger model, something that we indeed confirm below nu-
merically. To quantify the deviation from the lattice Schwinger model, we introduce

∆U2 =
∑
n

⟨[S̃+, S̃−]2⟩ =
∑
n

⟨P 0
n + P 2S

n ⟩, (9)

which essentially measures how strongly the link operator fails to be unitary.
In the following, we will present compelling evidence for the presence of fractons in

the TSM already at small spin truncations (S ≥ 2). Furthermore, we will show that for
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spin lengths S ≥ 3, the chiral condensate in the ground state of the TSM is essentially
the same as the one in the continnum Schwinger model. We also show that the size
of the quantity in Eq. (9) is correlated with quantitatively accurate results for the chiral
condensate with respect to the semi-classical continuum prediction.

2.3 Numerical methods

To perform numerical simulations we have developed codes based on two tech-
niques: exact diagonalization (ED) using the QuSpin package in Python, employed for
system sizes up to L = (4 sites+ 4 links), with a spin 1/2 on each site and up to spin 5
on each link; and tensor network (TN) calculations using ITensors in Julia, with system
sizes up to L = (20 sites+ 20 links) and similar spin sizes as for ED. The maximal bond
dimension used in theMPS representation of the variational state isχmax = 500, which
we found sufficient for obtaining converged results. Slightly larger system sizes are in
principle possible for the numerical codes, but we found the results for the considered
physical observables to be compatible with the analytical model within the system sizes
treated in the results. Bothmethods are sign-problem free andwork in an unbiasedway
also at strong coupling.

For the TN simulations, we have developed codes based on an MPS implementa-
tion of the DMRG algorithm for approximating ground states of quantum many-body
models. For this purpose, we use the Julia package ITensors. In order to save computa-
tional resources, we use a unitarily equivalent formulation of the two-flavour TSM. The
derivation of this Hamiltonian will be exposed in a scientific publication, together with
several non-trivial extensions. In 1 + 1d, it allows for reducing the degrees of freedom
by one per lattice site, a convenient resource economy for our numerics. For the nu-
merical calculations shown below, we implement the dimensionless version [24] of the
Hamiltonian of Eq. (7): H → H/e2a.

These codes will become highly valuable also during the further continuation of the
project, in particular to predict and benchmark quantum-simulation experiments of
lattice gauge theories.
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FIG. 1. Integer vs. fractional θ-dependence in the multi-flavour TSM: The

lowest three energy levels of the TSM Hamiltonian in case of twisted (upper panel) and

periodic (lower panel) boundary conditions as a function of the θ−angle. In the former

case, at θ = ±π, the two lowest lying states cross and the fidelity susceptibility (blue

dotted line) exhibits a strong peak. This indicates a rapid change in the properties of

the ground state, suggesting that the periodicity of the ground state is 4π. In contrast,

in case of periodic boundary conditions avoided crossing occurs at θ = ±π with only a

broad feature in the fidelity susceptibility, rendering the period of each energy level 2π.

2.4 Results

In this section, we present our main results on the fracton excitations in the multi-
flavor Schwinger model, in particular how they can be made visible in small, strongly-
correlated lattice models amenable for quantum simulation.

2.4.1 Fractional ground-state behavior from exact diagionalization

To obtain a direct evidence for the existence of the fractons in the TSM, we study
the lowest energy states as a function of the topological theta angle. For small non-
zero fermionic mass,mp = m ̸= 0, continuum path-integral calculations predict theN
lowest energy levels of theN -flavour Schwinger model to oscillate as a function of the
theta angle as [25]

Ek(θ) = −2m exp

(
− π

NµeL

)
cos

(
θ + 2πk

N

)
, (10)
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where k ∈ {0, · · · , N − 1}. The fracton configurations become manifest through the
2π periodicity of the fraction θ/N , rather than only θ as one is used to from the single-
flavor Schwinger model. For example, for N = 2, there are exact level crossings at
θ = ±π, where the ground and first excited state switch roles, resulting in an enlarged
θ periodicity of 4π. This fractional theta-dependence is the precise signature we are
looking for.

In the upper panel of Fig. 1, the three lowest energies of the TSMwithS = 2 are plot-
ted as a function of the topological theta-angle. We observe a clear gap closing at the
points θ = ±π. To further corroborate this result, we compute the fidelity susceptibil-
ity [26–28] (seeAppendix A for technical details) of the ground state. The delta-like peak
shows that at θ = ±π the properties of the ground state change rapidly, indicating an
actual crossing. In accordance with Eq. (10), this implies a fractional theta-dependence
of the ground state, resulting in the observed periodicity of θ = 4π. In contrast, for pe-
riodic boundary conditions, the gap remains non-zero even at θ = ±π, as shown in the
lower panel of Fig. 1. Accordingly, the fidelity susceptibility shows only a broad peak at
these points, indicating no drastic property change in the ground state, in accordance
with an integer theta dependence, giving the periodicity of θ = 2π.

Remarkably, the fracton signature derived from continuum calculations in the small-
m limit persists in awide range of values of the different parameters in the Hamiltonian,
as well as already for very small lattice sizes (in the figure, S = 2 and L = (4 sites + 4

links)).

2.4.2 Tensor network calculation of the chiral condensate

We obtain further evidence for the presence of fracton configurations in the lattice
TSM by investigating the chiral condensate. On the lattice with staggered fermions, the
chiral condensate becomes

⟨ψ̄ψ⟩ = 1

L

∑
n

(−1)nϕ̂†
nϕ̂n, (11)

where we suppressed the flavour index. Figure 2 displays themain results of our DMRG
simulations, for the range of physical volume eL ∈ [0.4, 9.0], values for the lattice spac-
ing a ∈ [0.1, 0.5], and spin truncation S = 3. As the twisted boundary conditions break
chiral symmetry, a finite volume can support a non-vanishing chiral condensate. Quite
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FIG. 2. Chiral condensate as a function of the volume in the truncated

Schwinger model for spin length S = 3: The numerical results for the expecta-

tion value of the chiral condensate in the approximate ground state for one flavour and

for two flavours with twisted boundary conditions coincide with the analytic results from

the continuum Schwinger model. This accordance holds true beyond the semi-classical

approximation. The results are robust w.r.t. the finite discretisation on lattice and hold

already for small lattice volumes.

surprisingly, even for the coarse truncation of S = 3, we encounter throughout the
entire range of volumes considered a quantitative agreement between the lattice cal-
culations and the analytical predictions for the continuum Schwinger model [5]. The
insignificance of lattice artifacts on the chiral condensate is quite remarkable, consider-
ingwe do not take the continuum limit [24] and that lattice spacings used are as large as
a = 0.5. In the next paragraph, we quantify this statement more precisely. Before that,
we note that the same analysis can be made for the single-flavour Schwinger model.
Again, the lattice results with S = 3 essentially coincides with the continuum predic-
tion for lattice spacings a ≤ 0.5. As the single-flavour Schwingermodel explicitly breaks
chiral symmetry, in this case the chiral condensate saturates to a finite value atL→ ∞.
In contrast, the one for the two-flavour model with twisted boundary conditions falls
off to zero at large L, highlighting the fact that the effect of boundary conditions disap-
pears for infinite volume.

Bymeans of Eq. (9) we canmonitor finite spin truncation errors in the TSM. In FIG. 3,
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FIG. 3. Violation of the unitarity of the link operator in the ground state of

the TSM as a function of the lattice volume for different spin trunctations:

Occupation of the highest energetic states on each link due to finite truncation of its

Hilbert space contribute to deviations from the untruncated Schwinger model. Already

for small spin lengths S = 3, this deviation falls below a permille, whereas the suppression

with the spin length is exponential.

we show the quantity ∆U2 in a range of lattice volumes for spin lengths S = 2, 3,

and 4. We observe that already for spin length S = 3 in the range of investigated
volumes, the occupation of the most energetic levels of the gauge fields is below a
permille. Furthermore, the spin length truncation very prominently affects the violation
of the commutation relation (Eq. (9)); the suppression of the error is exponential in
the spin length. The quantity ∆U2 gives a measure on the truncation error w.r.t. the
untruncated Schwinger model in any dimension and with arbitrary number of flavours.

2.5 Quantum simulation through a variational protocol and number of re-
quired qudits

The physics discussed above can be probed in near-term quantum simulators, which
can provide a direct demonstration of fractons in an experimental setting. A promis-
ing route is via adapting the VQE protocol previously developed at UIBK [30] to the
NeQST qudit quantum processor [31], to target the ground state of the multi-flavour
TSM. This model can be mapped onto a local spin Hamiltonian as in a recent proposal

NeQST, GA 101080086 D2.1 | 17



HORIZON-CL4-2021-DIGITAL-EMERGING-02-16 — Basic Science for Quantum Technologies (RIA)

Number of charges Nf = 1 Nf = 2 Nf = 3 Nf = 4

0 |0⟩ |00⟩ |000⟩ |0000⟩

1 |1⟩ |10⟩, |01⟩ |100⟩, |010⟩, |001⟩

|1000⟩,
|0100⟩,
|0010⟩,
|0001⟩

2 x |11⟩ |110⟩, |101⟩, |011⟩

|1100⟩,
|1010⟩,
|1001⟩,
|0110⟩,
|0101⟩,
|0011⟩

3 x x |111⟩

|1110⟩,
|1101⟩,
|1011⟩,
|0111⟩

4 x x x |1111⟩

TABLE I. If the matter is integrated out, as in Ref. [29], the electric field contains the

information about how many charges q occupy a given vertex (first column). For a given

number of flavours Nf , there are
(
Nf
q

)
possibilities of fermion occupations to obtain a

charge of q.

developed by the NeQST consortium [29]. As it was shown in that work for the single-
flavor lattice Schwinger model, already shallow variational circuits composed of native
operations on the trapped-ion qudit platform (single qudit rotations plus entangling
Mølmer–Sørensen gates) provide a high-fidelity parametrization of the ground state.

While the precise scaling of required variational layers cannot be predicted analyti-
cally, we have found that already few layers of entangling gates are typically sufficient
to prepare ground states with high fidelity [29]. Notably, in the trapped-ion quantum
simulator, the closed boundary conditions necessary for the chiral condensation can be
easily encoded in the variational ansatz due to the all-to-all connectivity.

The relevant physical observables can be easily extracted from the variational wave
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function. In particular, the chiral condensate can be measured in a wide range of phys-
ical volumes and for various couplings, which just correspond to a change of target pa-
rameters in the variational circuit. Further, since the TSM Hamiltonian can be mapped
onto a local spin Hamiltonian [29], the number of measurements for accurate estima-
tion of the energy will scale only linearly with system size.

As the above numerical analysis illustrates, already system sizes as small as 4matter
sites and 4 gauge links are sufficient for detecting chiral condensation due to fractons.
ForN = 2, the fermionic sites can be implemented in 4 qubits (for keeping track of the
flavor index of the matter) plus 4 qudits to represent the gauge links. This corresponds
to chains of 8 ions, fitting perfectly into already existing qudit devices [31].

Larger N can be realized in the same vein by integrating out the matter via Gauss’s
law. Due to this local conservation law, the electric fields account for the total charge
at each vertex. Qudits placed on the matter sites can then be used for keeping track of
the fermion flavor configuration. E.g., in the limit of one fermion per site, one requires(
N
1

)
levels, such that the NeQST trapped-ion processor can naturally implement up to

N = 7. In the worst case, when half of the flavours are present (i.e., a charge ofN/2 at
a specific matter site), one needs to identify which flavor configuration out of

(
N
N/2

)
is

realized. Table 2.5 indicates the possible configurations of each lattice site in the formof
a Fock state for different total charge and forNf flavours in the model. ForNf = 4, the
number of possible configurations is 6, so that 4 flavours fit into the 7 levels available
in the NeQST trapped-ion processor.

Moreover, since already very coarse truncations of the electric field are sufficient
(S = 2, 3), the dimensionality of the qudits can be as small as d = 5 for detecting
fractional θ−oscillations in the energy levels and as small as d = 7 for quantitative
agreement with continuum results. Both fit into the available level structure of the
trapped-ion species used in the NeQST consortium, enabling the implementation of
each gauge link in a single ion qudit.

Thus, up to N = 4 (or 7) and S = 3, the scaling of spatial resources is equal to the
number of lattice sites. Larger values of N and S could be achieved by decomposing
into several qudits, where the scaling of spatial resources still remains linear.
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3 Conclusions and Outlook

In this deliverable report, we have analyzed fractional gauge field configurations —
a version of instantons with a fractional topological charge—and how they contribute
to the build-up of a chiral condensate in the Schwinger model with multiple fermionic
flavours. Going beyond semi-classical approximations, we have demonstrated the pres-
ence of fractons in a strongly-correlated many-body lattice model for various system
sizes and in a range of values for the mass and the coupling constant. We have identi-
fied the smallest spin truncation (S = 3), for which the results for the chiral condensate
in the zero-mass limit agree quantitatively with the predictions from the (1+1)-d contin-
uum QED. Qualitative agreement is achieved already at even lower truncations such as
S = 2. Quite surprisingly, these agreements hold already for relatively small system
sizes and large values of the lattice spacing, thus allowing to extract valuable informa-
tion about the system without taking the continuum limit.

Further, we have provided an implementation plan bespoke for the trapped-ion plat-
form of the UIBK partner of NeQST. Thanks to intensive theoretical and numerical anal-
ysis, we were able to identify smoking gun signatures of fracton excitations, and to
evaluate the minimal resource requirement to implement. Quite surprisingly, although
the key arguments for the relevance of fractons derive from semi-classical continuum
analysis, they become clearly visible in small, highly truncated, and strongly-coupled
lattice theories, which we have found to perfectly fit the resources available in current
trapped-ion qudit setups. Based on these analyses, benchmarks, and insights, work on
the experimental implementations of this model and its rich physics are ongoing.

Simultaneously, UIBK experimentally implemented an equally interesting setting of
Abelian gauge theories, namely proceeding towards higher dimensions through the im-
plementation of an Abelian gauge theory in 2 + 1d including both matter and gauge
fields [32]. This addresses an outstanding frontier of current gauge-theory quantum
simulation [33]. The interactions between the consortium partners have also stimu-
lated new protocols to mitigate errors of gauge-symmetry in experiments, based on
weak measurements or on error-correcting codes [34–36].

In this deliverable report, we have restricted our analysis to low numbers of flavours
coupled to the U(1) gauge field. Immediate extensions could investigate large num-
bers of fermionic flavours—a testbed for probing phenomena like chiral phase transi-
tion in QCD. Even though we have proven signatures of gauge configurations with frac-
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tional topological charge, understanding their origin beyond semi-classical arguments
remains unresolved. A future research direction could be to develop a characteriza-
tion in terms of topological invariants valid for a many-body system with local gauge
symmetry.

Looking further, the insights achieved and expertise developed at the levels of hard-
ware, simulation and control software, as well as algorithm development will be of high
relevance to the future activities of theNeQST project and beyond. For example, the ex-
pertise acquired on experimental realizations of lattice gauge theories will be of large
benefit for the development and implementation of more complicated theories; the
numerical codes to benchmark the models will be used to advance the development of
a numerical simulation suite for the qudit platform; and the experiencewith constraints
in variational algorithms will stimulate development of optimization problems.
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A Fidelity susceptibility

In this appendix, we give a few details on the fidelity susceptibility of the ground
state, shown FIG. 1 as a function of the θ−angle. The fidelity susceptibility is defined as

F (2)
0 (θ) =

∂2

∂δ2
| ⟨ψ(θ)|ψ(θ + δ)⟩ |2|δ=0. (A1)

This quantity is used to indicate phase transitions and rapid changes of the properties
of the corresponding state. If the fidelity susceptibility exhibits a delta-like peak in a
certain point, the properties of the corresponding state changes and this means that a
crossing occurs—the properties of the lower-lying state to the left of the crossing point
are different from those of the lower-lying state to the right. In practise, we compute
the discretised version of this quantity,

F (2)
0 (θ, δ) =

1

δ2
[
| ⟨ψ(θ)|ψ(θ + δ)⟩ |2

+| ⟨ψ(θ)|ψ(θ − δ)⟩ |2 − 2
]
, (A2)

for a sufficiently small δ = 0.025. Further decrease of δ leads to a narrowing of the peak
and exploding of its amplitude in case of twisted boundary conditions and no significant
change in case of periodic boundary conditions. The fact that the fidelity susceptibility
behaves differently for tbc w.r.t. pbc means that the periodicity in θ in the former case
is 4π, whereas in the later case it is 2π.
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